Music in the brain (2024)

References

  1. Zatorre, R. J., Chen, J. L. & Penhune, V. B. When the brain plays music: auditory–motor interactions in music perception and production. Nat. Rev. Neurosci. 8, 547–558 (2007). A seminal review of auditory–motor coupling in music.

    Article CAS PubMed Google Scholar

  2. Koelsch, S. Toward a neural basis of music perception–a review and updated model. Front. Psychol. 2, 110 (2011).

    Article PubMed PubMed Central Google Scholar

  3. Maes, P. J., Leman, M., Palmer, C. & Wanderley, M. M. Action-based effects on music perception. Front. Psychol. 4, 1008 (2014).

    Article PubMed PubMed Central Google Scholar

  4. Koelsch, S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15, 170–180 (2014). In this review, the author shows how music engages phylogenetically old reward networks in the brain to evoke emotions, and not merely subjective feelings.

    Article CAS PubMed Google Scholar

  5. Vuust, P. & Witek, M. A. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music. Front. Psychol. 5, 1111 (2014).

    Article PubMed PubMed Central Google Scholar

  6. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010). This review posits that several global brain theories may be unified by the free-energy principle.

    Article CAS PubMed Google Scholar

  7. Koelsch, S., Vuust, P. & Friston, K. Predictive processes and the peculiar case of music. Trends Cogn. Sci. 23, 63–77 (2019). This review focuses specifically on predictive coding in music.

    Article PubMed Google Scholar

  8. Meyer, L. Emotion and Meaning in Music (Univ. of Chicago Press, 1956).

  9. Lerdahl, F. & Jackendoff, R. A Generative Theory of Music (MIT Press, 1999).

  10. Huron, D. Sweet Anticipation (MIT Press, 2006). In this book, Huron draws on evolutionary theory and statistical learning to propose a general theory of musical expectation.

  11. Hansen, N. C. & Pearce, M. T. Predictive uncertainty in auditory sequence processing. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.01008 (2014).

    Article PubMed PubMed Central Google Scholar

  12. Vuust, P., Brattico, E., Seppanen, M., Naatanen, R. & Tervaniemi, M. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia 50, 1432–1443 (2012).

    Article PubMed Google Scholar

  13. Altenmüller, E. O. How many music centers are in the brain? Ann. N. Y. Acad. Sci. 930, 273–280 (2001).

    Article PubMed Google Scholar

  14. Monelle, R. Linguistics and Semiotics in Music (Harwood Academic Publishers, 1992).

  15. Rohrmeier, M. A. & Koelsch, S. Predictive information processing in music cognition. A critical review. Int. J. Psychophysiol. 83, 164–175 (2012).

    Article PubMed Google Scholar

  16. Vuust, P., Dietz, M. J., Witek, M. & Kringelbach, M. L. Now you hear it: a predictive coding model for understanding rhythmic incongruity. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.13622 (2018).

    Article PubMed Google Scholar

  17. Vuust, P., Ostergaard, L., Pallesen, K. J., Bailey, C. & Roepstorff, A. Predictive coding of music–brain responses to rhythmic incongruity. Cortex 45, 80–92 (2009).

    Article PubMed Google Scholar

  18. Vuust, P. & Frith, C. Anticipation is the key to understanding music and the effects of music on emotion. Behav. Brain Res. 31, 599–600 (2008). This is the foundation for the PCM model used in this Review.

    Google Scholar

  19. Garrido, M. I., Sahani, M. & Dolan, R. J. Outlier responses reflect sensitivity to statistical structure in the human brain. PLoS Comput. Biol. 9, e1002999 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  20. Lumaca, M., Baggio, G., Brattico, E., Haumann, N. T. & Vuust, P. From random to regular: neural constraints on the emergence of isochronous rhythm during cultural transmission. Soc. Cogn. Affect. Neurosci. 13, 877–888 (2018).

    Article PubMed PubMed Central Google Scholar

  21. Quiroga-Martinez, D. R. et al. Musical prediction error responses similarly reduced by predictive uncertainty in musicians and non-musicians. Eur. J. Neurosci. https://doi.org/10.1111/ejn.14667 (2019).

    Article Google Scholar

  22. Koelsch, S., Schröger, E. & Gunter, T. C. Music matters: preattentive musicality of the human brain. Psychophysiology 39, 38–48 (2002).

    Article PubMed Google Scholar

  23. Koelsch, S., Schmidt, B.-h & Kansok, J. Effects of musical expertise on the early right anterior negativity: an event-related brain potential study. Psychophysiology 39, 657–663 (2002).

    Article PubMed Google Scholar

  24. Lumaca, M., Dietz, M. J., Hansen, N. C., Quiroga-Martinez, D. R. & Vuust, P. Perceptual learning of tone patterns changes the effective connectivity between Heschl’s gyrus and planum temporale. Hum. Brain Mapp. 42, 941–952 (2020).

    Article PubMed PubMed Central Google Scholar

  25. Lieder, F., Daunizeau, J., Garrido, M. I., Friston, K. J. & Stephan, K. E. Modelling trial-by-trial changes in the mismatch negativity. PLoS Comput. Biol. 9, e1002911 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  26. Wacongne, C., Changeux, J. P. & Dehaene, S. A neuronal model of predictive coding accounting for the mismatch negativity. J. Neurosci. 32, 3665–3678 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  27. Kiebel, S. J., Garrido, M. I. & Friston, K. J. Dynamic causal modelling of evoked responses: the role of intrinsic connections. Neuroimage 36, 332–345 (2007).

    Article PubMed Google Scholar

  28. Feldman, H. & Friston, K. J. Attention, uncertainty, and free-energy. Front. Hum. Neurosci. 4, 215 (2010).

    Article PubMed PubMed Central Google Scholar

  29. Cheung, V. K. M. et al. Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Curr. Biol. 29, 4084–4092 e4084 (2019). This fMRI study ties uncertainty and surprise to musical pleasure.

    Article CAS PubMed Google Scholar

  30. McDermott, J. H. & Oxenham, A. J. Music perception, pitch, and the auditory system. Curr. Opin. Neurobiol. 18, 452–463 (2008).

    Article CAS PubMed PubMed Central Google Scholar

  31. Thoret, E., Caramiaux, B., Depalle, P. & McAdams, S. Learning metrics on spectrotemporal modulations reveals the perception of musical instrument timbre. Nat. Hum. Behav. 5, 369–377 (2020).

    Article PubMed Google Scholar

  32. Siedenburg, K. & McAdams, S. Four distinctions for the auditory “wastebasket” of timbre. Front. Psychol. 8, 1747 (2017).

    Article PubMed PubMed Central Google Scholar

  33. Bendor, D. & Wang, X. The neuronal representation of pitch in primate auditory cortex. Nature 436, 1161–1165 (2005).

    Article CAS PubMed PubMed Central Google Scholar

  34. Zatorre, R. J. Pitch perception of complex tones and human temporal-lobe function. J. Acoustical Soc. Am. 84, 566–572 (1988).

    Article CAS Google Scholar

  35. Warren, J. D., Uppenkamp, S., Patterson, R. D. & Griffiths, T. D. Separating pitch chroma and pitch height in the human brain. Proc. Natl Acad. Sci. USA 100, 10038–10042 (2003). Using fMRI data, this study shows that pitch chroma is represented anterior to the primary auditory cortex, and pitch height is represented posterior to the primary auditory cortex.

    Article CAS PubMed PubMed Central Google Scholar

  36. Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  37. Leaver, A. M., Van Lare, J., Zielinski, B., Halpern, A. R. & Rauschecker, J. P. Brain activation during anticipation of sound sequences. J. Neurosci. 29, 2477–2485 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  38. Houde, J. F. & Chang, E. F. The cortical computations underlying feedback control in vocal production. Curr. Opin. Neurobiol. 33, 174–181 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  39. Lee, Y. S., Janata, P., Frost, C., Hanke, M. & Granger, R. Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI. Neuroimage 57, 293–300 (2011).

    Article PubMed Google Scholar

  40. Janata, P. et al. The cortical topography of tonal structures underlying Western music. Science 298, 2167–2170 (2002).

    Article CAS PubMed Google Scholar

  41. Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).

    Article CAS PubMed Google Scholar

  42. Saffran, J. R., Johnson, E. K., Aslin, R. N. & Newport, E. L. Statistical learning of tone sequences by human infants and adults. Cognition 70, 27–52 (1999).

    Article CAS PubMed Google Scholar

  43. Krumhansl, C. L. Perceptual structures for tonal music. Music. Percept. 1, 28–62 (1983).

    Article Google Scholar

  44. Margulis, E. H. A model of melodic expectation. Music. Percept. 22, 663–714 (2005).

    Article Google Scholar

  45. Temperley, D. A probabilistic model of melody perception. Cogn. Sci. 32, 418–444 (2008).

    Article PubMed Google Scholar

  46. Pearce, M. T. & Wiggins, G. A. Auditory expectation: the information dynamics of music perception and cognition. Top. Cogn. Sci. 4, 625–652 (2012).

    Article PubMed Google Scholar

  47. Sears, D. R. W., Pearce, M. T., Caplin, W. E. & McAdams, S. Simulating melodic and harmonic expectations for tonal cadences using probabilistic models. J. N. Music. Res. 47, 29–52 (2018).

    Article Google Scholar

  48. Näätänen, R., Gaillard, A. W. & Mäntysalo, S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. 42, 313–329 (1978).

    Article Google Scholar

  49. Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol. 118, 2544–2590 (2007). This classic review covers three decades of MMN research to understand auditory perception.

    Article PubMed Google Scholar

  50. Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C. & Vuust, P. The Musical Ear Test, a new reliable test for measuring musical competence. Learn. Individ. Differ. 20, 188–196 (2010).

    Article Google Scholar

  51. Tervaniemi, M. et al. Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus. Eur. J. Neurosci. 30, 1636–1642 (2009).

    Article CAS PubMed Google Scholar

  52. Burunat, I. et al. The reliability of continuous brain responses during naturalistic listening to music. Neuroimage 124, 224–231 (2016).

    Article PubMed Google Scholar

  53. Burunat, I. et al. Action in perception: prominent visuo-motor functional symmetry in musicians during music listening. PLoS ONE 10, e0138238 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  54. Alluri, V. et al. Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. Neuroimage 59, 3677–3689 (2012). A free-listening fMRI study showing brain networks involved in perception of distinct acoustical features of music.

    Article PubMed Google Scholar

  55. Halpern, A. R. & Zatorre, R. J. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cereb. Cortex 9, 697–704 (1999).

    Article CAS PubMed Google Scholar

  56. Herholz, S. C., Halpern, A. R. & Zatorre, R. J. Neuronal correlates of perception, imagery, and memory for familiar tunes. J. Cogn. Neurosci. 24, 1382–1397 (2012).

    Article PubMed Google Scholar

  57. Pallesen, K. J. et al. Emotion processing of major, minor, and dissonant chords: a functional magnetic resonance imaging study. Ann. N. Y. Acad. Sci. 1060, 450–453 (2005).

    Article PubMed Google Scholar

  58. McPherson, M. J. et al. Perceptual fusion of musical notes by native Amazonians suggests universal representations of musical intervals. Nat. Commun. 11, 2786 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  59. Helmholtz H. L. F. On the Sensations of Tone as a Physiological Basis for the Theory of Music (Cambridge Univ. Press, 1954).

  60. Vassilakis, P. N. & Kendall, R. A. in Human Vision and Electronic Imaging XV. 75270O (International Society for Optics and Photonics, 2010).

  61. Plomp, R. & Levelt, W. J. M. Tonal consonance and critical bandwidth. J. Acoustical Soc. Am. 38, 548–560 (1965).

    Article CAS Google Scholar

  62. McDermott, J. H., Schultz, A. F., Undurraga, E. A. & Godoy, R. A. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature 535, 547–550 (2016). An ethnomusicology study showing that consonance preference may be absent in people with minimal exposure to Western music.

    Article CAS PubMed Google Scholar

  63. Mehr, S. A. et al. Universality and diversity in human song. Science https://doi.org/10.1126/science.aax0868 (2019).

    Article PubMed PubMed Central Google Scholar

  64. Patel, A. D., Gibson, E., Ratner, J., Besson, M. & Holcomb, P. J. Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci. 10, 717–733 (1998). This classic study compares responses to syntactic incongruities in both language and Western tonal music.

    Article CAS PubMed Google Scholar

  65. Janata, P. The neural architecture of music-evoked autobiographical memories. Cereb. Cortex 19, 2579–2594 (2009).

    Article PubMed PubMed Central Google Scholar

  66. Maess, B., Koelsch, S., Gunter, T. C. & Friederici, A. D. Musical syntax is processed in Broca’s area: an MEG study. Nat. Neurosci. 4, 540–545 (2001).

    Article CAS PubMed Google Scholar

  67. Koelsch, S. et al. Differentiating ERAN and MMN: an ERP study. Neuroreport 12, 1385–1389 (2001). Using EEG, the authors show that ERAN and MMN reflect different cognitive mechanisms.

    Article CAS PubMed Google Scholar

  68. Loui, P., Grent-‘t-Jong, T., Torpey, D. & Woldorff, M. Effects of attention on the neural processing of harmonic syntax in Western music. Cogn. Brain Res. 25, 678–687 (2005).

    Article Google Scholar

  69. Koelsch, S., Fritz, T., Schulze, K., Alsop, D. & Schlaug, G. Adults and children processing music: an fMRI study. Neuroimage 25, 1068–1076 (2005).

    Article PubMed Google Scholar

  70. Tillmann, B., Janata, P. & Bharucha, J. J. Activation of the inferior frontal cortex in musical priming. Ann. N. Y. Acad. Sci. 999, 209–211 (2003).

    Article PubMed Google Scholar

  71. Garza-Villarreal, E. A., Brattico, E., Leino, S., Ostergaard, L. & Vuust, P. Distinct neural responses to chord violations: a multiple source analysis study. Brain Res. 1389, 103–114 (2011).

    Article CAS PubMed Google Scholar

  72. Leino, S., Brattico, E., Tervaniemi, M. & Vuust, P. Representation of harmony rules in the human brain: further evidence from event-related potentials. Brain Res. 1142, 169–177 (2007).

    Article CAS PubMed Google Scholar

  73. Sammler, D. et al. Co-localizing linguistic and musical syntax with intracranial EEG. Neuroimage 64, 134–146 (2013).

    Article PubMed Google Scholar

  74. Loui, P., Wessel, D. L. & Hudson Kam, C. L. Humans rapidly learn grammatical structure in a new musical scale. Music. Percept. 27, 377–388 (2010).

    Article PubMed PubMed Central Google Scholar

  75. Loui, P., Wu, E. H., Wessel, D. L. & Knight, R. T. A generalized mechanism for perception of pitch patterns. J. Neurosci. 29, 454–459 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  76. Cheung, V. K. M., Meyer, L., Friederici, A. D. & Koelsch, S. The right inferior frontal gyrus processes nested non-local dependencies in music. Sci. Rep. 8, 3822 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  77. Haueisen, J. & Knosche, T. R. Involuntary motor activity in pianists evoked by music perception. J. Cogn. Neurosci. 13, 786–792 (2001).

    Article CAS PubMed Google Scholar

  78. Bangert, M. et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30, 917–926 (2006).

    Article PubMed Google Scholar

  79. Baumann, S. et al. A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res. 1161, 65–78 (2007).

    Article CAS PubMed Google Scholar

  80. Lahav, A., Saltzman, E. & Schlaug, G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 27, 308–314 (2007).

    Article CAS PubMed PubMed Central Google Scholar

  81. Bianco, R. et al. Neural networks for harmonic structure in music perception and action. Neuroimage 142, 454–464 (2016).

    Article CAS PubMed Google Scholar

  82. Eerola, T., Vuoskoski, J. K., Peltola, H.-R., Putkinen, V. & Schäfer, K. An integrative review of the enjoyment of sadness associated with music. Phys. Life Rev. 25, 100–121 (2018).

    Article PubMed Google Scholar

  83. Huron, D. M. D. The harmonic minor scale provides an optimum way of reducing average melodic interval size, consistent with sad affect cues. Empir. Musicol. Rev. 7, 15 (2012).

    Google Scholar

  84. Huron, D. A comparison of average pitch height and interval size in major-and minor-key themes: evidence consistent with affect-related pitch prosody. 3, 59-63 (2008).

  85. Juslin, P. N. & Laukka, P. Communication of emotions in vocal expression and music performance: different channels, same code? Psychol. Bull. 129, 770 (2003).

    Article PubMed Google Scholar

  86. Fritz, T. et al. Universal recognition of three basic emotions in music. Curr. Biol. 19, 573–576 (2009).

    Article CAS PubMed Google Scholar

  87. London, J. Hearing in Time: Psychological Aspects of Musical Meter (Oxford Univ. Press, 2012).

  88. Honing, H. Without it no music: beat induction as a fundamental musical trait. Ann. N. Y. Acad. Sci. 1252, 85–91 (2012).

    Article PubMed Google Scholar

  89. Hickok, G., Farahbod, H. & Saberi, K. The rhythm of perception: entrainment to acoustic rhythms induces subsequent perceptual oscillation. Psychol. Sci. 26, 1006–1013 (2015).

    Article PubMed Google Scholar

  90. Yabe, H., Tervaniemi, M., Reinikainen, K. & Näätänen, R. Temporal window of integration revealed by MMN to sound omission. Neuroreport 8, 1971–1974 (1997).

    Article CAS PubMed Google Scholar

  91. Andreou, L.-V., Griffiths, T. D. & Chait, M. Sensitivity to the temporal structure of rapid sound sequences — an MEG study. Neuroimage 110, 194–204 (2015).

    Article PubMed Google Scholar

  92. Jongsma, M. L., Meeuwissen, E., Vos, P. G. & Maes, R. Rhythm perception: speeding up or slowing down affects different subcomponents of the ERP P3 complex. Biol. Psychol. 75, 219–228 (2007).

    Article PubMed Google Scholar

  93. Graber, E. & Fujioka, T. Endogenous expectations for sequence continuation after auditory beat accelerations and decelerations revealed by P3a and induced beta-band responses. Neuroscience 413, 11–21 (2019).

    Article CAS PubMed Google Scholar

  94. Brochard, R., Abecasis, D., Potter, D., Ragot, R. & Drake, C. The “ticktock” of our internal clock: direct brain evidence of subjective accents in isochronous sequences. Psychol. Sci. 14, 362–366 (2003).

    Article PubMed Google Scholar

  95. Lerdahl, F. & Jackendoff, R. An overview of hierarchical structure in music. Music. Percept. 1, 229–252 (1983).

    Article Google Scholar

  96. Large, E. W. & Kolen, J. F. Resonance and the perception of musical meter. Connect. Sci. 6, 177–208 (1994).

    Article Google Scholar

  97. Large, E. W. & Jones, M. R. The dynamics of attending: how people track time-varying events. Psychol. Rev. 106, 119–159 (1999).

    Article Google Scholar

  98. Cutietta, R. A. & Booth, G. D. The influence of metre, mode, interval type and contour in repeated melodic free-recall. Psychol. Music 24, 222–236 (1996).

    Article Google Scholar

  99. Smith, K. C. & Cuddy, L. L. Effects of metric and harmonic rhythm on the detection of pitch alterations in melodic sequences. J. Exp. Psychol. 15, 457–471 (1989).

    CAS Google Scholar

  100. Palmer, C. & Krumhansl, C. L. Mental representations for musical meter. J. Exp. Psychol. 16, 728–741 (1990).

    CAS Google Scholar

  101. Einarson, K. M. & Trainor, L. J. Hearing the beat: young children’s perceptual sensitivity to beat alignment varies according to metric structure. Music. Percept. 34, 56–70 (2016).

    Article Google Scholar

  102. Large, E. W., Herrera, J. A. & Velasco, M. J. Neural networks for beat perception in musical rhythm. Front. Syst. Neurosci. 9, 159 (2015).

    Article PubMed PubMed Central Google Scholar

  103. Nozaradan, S., Peretz, I., Missal, M. & Mouraux, A. Tagging the neuronal entrainment to beat and meter. J. Neurosci. 31, 10234–10240 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  104. Nozaradan, S., Peretz, I. & Mouraux, A. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J. Neurosci. 32, 17572–17581 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  105. Nozaradan, S., Schonwiesner, M., Keller, P. E., Lenc, T. & Lehmann, A. Neural bases of rhythmic entrainment in humans: critical transformation between cortical and lower-level representations of auditory rhythm. Eur. J. Neurosci. 47, 321–332 (2018).

    Article PubMed Google Scholar

  106. Lenc, T., Keller, P. E., Varlet, M. & Nozaradan, S. Neural and behavioral evidence for frequency-selective context effects in rhythm processing in humans. Cereb. Cortex Commun. https://doi.org/10.1093/texcom/tgaa037 (2020).

    Article PubMed PubMed Central Google Scholar

  107. Jacoby, N. & McDermott, J. H. Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Curr. Biol. 27, 359–370 (2017).

    Article CAS PubMed Google Scholar

  108. Hannon, E. E. & Trehub, S. E. Metrical categories in infancy and adulthood. Psychol. Sci. 16, 48–55 (2005).

    Article PubMed Google Scholar

  109. Hannon, E. E. & Trehub, S. E. Tuning in to musical rhythms: infants learn more readily than adults. Proc. Natl Acad. Sci. USA 102, 12639–12643 (2005).

    Article CAS PubMed PubMed Central Google Scholar

  110. Vuust, P. et al. To musicians, the message is in the meter pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. Neuroimage 24, 560–564 (2005).

    Article PubMed Google Scholar

  111. Grahn, J. A. & Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906 (2007). This fMRI study investigates participants listening to rhythms of varied complexity.

    Article PubMed Google Scholar

  112. Toiviainen, P., Burunat, I., Brattico, E., Vuust, P. & Alluri, V. The chronnectome of musical beat. Neuroimage 216, 116191 (2019).

    Article PubMed Google Scholar

  113. Chen, J. L., Penhune, V. B. & Zatorre, R. J. Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J. Cogn. Neurosci. 20, 226–239 (2008).

    Article PubMed Google Scholar

  114. Levitin, D. J., Grahn, J. A. & London, J. The psychology of music: rhythm and movement. Annu. Rev. Psychol. 69, 51–75 (2018).

    Article PubMed Google Scholar

  115. Winkler, I., Haden, G. P., Ladinig, O., Sziller, I. & Honing, H. Newborn infants detect the beat in music. Proc. Natl Acad. Sci. USA 106, 2468–2471 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  116. Phillips-Silver, J. & Trainor, L. J. Feeling the beat: movement influences infant rhythm perception. Science 308, 1430–1430 (2005).

    Article CAS PubMed Google Scholar

  117. Cirelli, L. K., Trehub, S. E. & Trainor, L. J. Rhythm and melody as social signals for infants. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.13580 (2018).

    Article PubMed Google Scholar

  118. Cirelli, L. K., Einarson, K. M. & Trainor, L. J. Interpersonal synchrony increases prosocial behavior in infants. Dev. Sci. 17, 1003–1011 (2014).

    Article PubMed Google Scholar

  119. Repp, B. H. Sensorimotor synchronization: a review of the tapping literature. Psychon. Bull. Rev. 12, 969–992 (2005).

    Article PubMed Google Scholar

  120. Repp, B. H. & Su, Y. H. Sensorimotor synchronization: a review of recent research (2006-2012). Psychon. Bull. Rev. 20, 403–452 (2013). This review, and Repp (2005), succinctly covers the field of sensorimotor synchronization.

    Article PubMed Google Scholar

  121. Zarco, W., Merchant, H., Prado, L. & Mendez, J. C. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J. Neurophysiol. 102, 3191–3202 (2009).

    Article PubMed PubMed Central Google Scholar

  122. Honing, H., Bouwer, F. L., Prado, L. & Merchant, H. Rhesus monkeys (Macaca mulatta) sense isochrony in rhythm, but not the beat: additional support for the gradual audiomotor evolution hypothesis. Front. Neurosci. 12, 475 (2018).

    Article PubMed PubMed Central Google Scholar

  123. Hattori, Y. & Tomonaga, M. Rhythmic swaying induced by sound in chimpanzees (Pan troglodytes). Proc. Natl Acad. Sci. USA 117, 936–942 (2020).

    Article CAS PubMed Google Scholar

  124. Danielsen, A. Presence and Pleasure. The Funk Grooves of James Brown and Parliament (Wesleyan Univ. Press, 2006).

  125. Madison, G., Gouyon, F., Ullen, F. & Hornstrom, K. Modeling the tendency for music to induce movement in humans: first correlations with low-level audio descriptors across music genres. J. Exp. Psychol. Hum. Percept. Perform. 37, 1578–1594 (2011).

    Article PubMed Google Scholar

  126. Stupacher, J., Hove, M. J., Novembre, G., Schutz-Bosbach, S. & Keller, P. E. Musical groove modulates motor cortex excitability: a TMS investigation. Brain Cogn. 82, 127–136 (2013).

    Article PubMed Google Scholar

  127. Janata, P., Tomic, S. T. & Haberman, J. M. Sensorimotor coupling in music and the psychology of the groove. J. Exp. Psychol. 141, 54 (2012). Using a systematic approach, this multiple-studies article shows that the concept of groove can be widely understood as a pleasurable drive towards action.

    Article Google Scholar

  128. Witek, M. A. et al. A critical cross-cultural study of sensorimotor and groove responses to syncopation among Ghanaian and American university students and staff. Music. Percept. 37, 278–297 (2020).

    Article Google Scholar

  129. Friston, K., Mattout, J. & Kilner, J. Action understanding and active inference. Biol. Cybern. 104, 137–160 (2011).

    Article PubMed PubMed Central Google Scholar

  130. Longuet-Higgins, H. C. & Lee, C. S. The rhythmic interpretation of monophonic music. Music. Percept. 1, 18 (1984).

    Article Google Scholar

  131. Sioros, G., Miron, M., Davies, M., Gouyon, F. & Madison, G. Syncopation creates the sensation of groove in synthesized music examples. Front. Psychol. 5, 1036 (2014).

    Article PubMed PubMed Central Google Scholar

  132. Witek, M. A., Clarke, E. F., Wallentin, M., Kringelbach, M. L. & Vuust, P. Syncopation, body-movement and pleasure in groove music. PLoS ONE 9, e94446 (2014).

    Article PubMed PubMed Central Google Scholar

  133. Kowalewski, D. A., Kratzer, T. M. & Friedman, R. S. Social music: investigating the link between personal liking and perceived groove. Music. Percept. 37, 339–346 (2020).

    Article Google Scholar

  134. Bowling, D. L., Ancochea, P. G., Hove, M. J. & Tec*mseh Fitch, W. Pupillometry of groove: evidence for noradrenergic arousal in the link between music and movement. Front. Neurosci. 13, 1039 (2019).

    Article Google Scholar

  135. Matthews, T. E., Witek, M. A. G., Heggli, O. A., Penhune, V. B. & Vuust, P. The sensation of groove is affected by the interaction of rhythmic and harmonic complexity. PLoS ONE 14, e0204539 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  136. Matthews, T. E., Witek, M. A., Lund, T., Vuust, P. & Penhune, V. B. The sensation of groove engages motor and reward networks. Neuroimage 214, 116768 (2020). This fMRI study shows that the sensation of groove engages both motor and reward networks in the brain.

    Article PubMed Google Scholar

  137. Vaquero, L., Ramos-Escobar, N., François, C., Penhune, V. & Rodríguez-Fornells, A. White-matter structural connectivity predicts short-term melody and rhythm learning in non-musicians. Neuroimage 181, 252–262 (2018).

    Article PubMed Google Scholar

  138. Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E. & Evans, A. C. Hearing in the mind’s ear: a PET investigation of musical imagery and perception. J. Cogn. Neurosci. 8, 29–46 (1996).

    Article CAS PubMed Google Scholar

  139. Benadon, F. Meter isn’t everything: the case of a timeline-oriented Cuban polyrhythm. N. Ideas Psychol. 56, 100735 (2020).

    Article Google Scholar

  140. London, J., Polak, R. & Jacoby, N. Rhythm histograms and musical meter: a corpus study of Malian percussion music. Psychon. Bull. Rev. 24, 474–480 (2017).

    Article PubMed Google Scholar

  141. Huron, D. Is music an evolutionary adaptation? Ann. N. Y. Acad. Sci. 930, 43–61 (2001).

    Article CAS PubMed Google Scholar

  142. Koelsch, S. Towards a neural basis of music-evoked emotions. Trends Cogn. Sci. 14, 131–137 (2010).

    Article PubMed Google Scholar

  143. Eerola, T. & Vuoskoski, J. K. A comparison of the discrete and dimensional models of emotion in music. Psychol. Music. 39, 18–49 (2010).

    Article Google Scholar

  144. Lonsdale, A. J. & North, A. C. Why do we listen to music? A uses and gratifications analysis. Br. J. Psychol. 102, 108–134 (2011).

    Article PubMed Google Scholar

  145. Juslin, P. N. & Laukka, P. Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J. N. Music. Res. 33, 217–238 (2004).

    Article Google Scholar

  146. Huron, D. Why is sad music pleasurable? A possible role for prolactin. Music. Sci. 15, 146–158 (2011).

    Article Google Scholar

  147. Brattico, E. et al. It’s sad but I like it: the neural dissociation between musical emotions and liking in experts and laypersons. Front. Hum. Neurosci. 9, 676 (2015).

    PubMed Google Scholar

  148. Sachs, M. E., Damasio, A. & Habibi, A. Unique personality profiles predict when and why sad music is enjoyed. Psychol. Music https://doi.org/10.1177/0305735620932660 (2020).

    Article Google Scholar

  149. Sachs, M. E., Habibi, A., Damasio, A. & Kaplan, J. T. Dynamic intersubject neural synchronization reflects affective responses to sad music. Neuroimage 218, 116512 (2020).

    Article PubMed Google Scholar

  150. Juslin, P. N. & Vastfjall, D. Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci. 31, 559–575 (2008). Using a novel theoretical framework, the authors propose that the mechanisms that evoke emotions from music are not unique to music.

    Article PubMed Google Scholar

  151. Rickard, N. S. Intense emotional responses to music: a test of the physiological arousal hypothesis. Psychol. Music. 32, 371–388 (2004).

    Article Google Scholar

  152. Cowen, A. S., Fang, X., Sauter, D. & Keltner, D. What music makes us feel: at least 13 dimensions organize subjective experiences associated with music across different cultures. Proc. Natl Acad. Sci. USA 117, 1924–1934 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  153. Argstatter, H. Perception of basic emotions in music: culture-specific or multicultural? Psychol. Music. 44, 674–690 (2016).

    Article Google Scholar

  154. Stevens, C. J. Music perception and cognition: a review of recent cross-cultural research. Top. Cogn. Sci. 4, 653–667 (2012).

    Article PubMed Google Scholar

  155. Pearce, M. Cultural distance: a computational approach to exploring cultural influences on music cognition. in Oxford Handbook of Music and the Brain Vol. 31 (Oxford Univ. Press, 2018).

  156. van der Weij, B., Pearce, M. T. & Honing, H. A probabilistic model of meter perception: simulating enculturation. Front. Psychol. 8, 824 (2017).

    Article PubMed PubMed Central Google Scholar

  157. Kringelbach, M. L. & Berridge, K. C. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn. Sci. 13, 479–487 (2009).

    Article PubMed PubMed Central Google Scholar

  158. Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001). This seminal positron emission tomography study shows that the experience of musical chills correlates with activity in the reward system.

    Article CAS PubMed PubMed Central Google Scholar

  159. Salimpoor, V. N. & Zatorre, R. J. Complex cognitive functions underlie aesthetic emotions: comment on “From everyday emotions to aesthetic emotions: towards a unified theory of musical emotions” by Patrik N. Juslin. Phys. Life Rev. 10, 279–280 (2013).

    Article PubMed Google Scholar

  160. Salimpoor, V. N. et al. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219 (2013).

    Article CAS PubMed Google Scholar

  161. Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A. & Zatorre, R. J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14, 257–262 (2011).

    Article CAS PubMed Google Scholar

  162. Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R. & Zatorre, R. J. The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE 4, e7487 (2009).

    Article PubMed PubMed Central CAS Google Scholar

  163. Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A. & Marco-Pallares, J. Dissociation between musical and monetary reward responses in specific musical anhedonia. Curr. Biol. 24, 699–704 (2014).

    Article CAS PubMed Google Scholar

  164. Martinez-Molina, N., Mas-Herrero, E., Rodriguez-Fornells, A., Zatorre, R. J. & Marco-Pallares, J. Neural correlates of specific musical anhedonia. Proc. Natl Acad. Sci. USA 113, E7337–E7345 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  165. Gebauer, L. K., M., L. & Vuust, P. Musical pleasure cycles: the role of anticipation and dopamine. Psychomusicology 22, 16 (2012).

    Article Google Scholar

  166. Shany, O. et al. Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Soc. Cogn. Affect. Neurosci. 14, 459–470 (2019).

    Article PubMed PubMed Central Google Scholar

  167. Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A. & Zatorre, R. J. Predictability and uncertainty in the pleasure of music: a reward for learning? J. Neurosci. 39, 9397–9409 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  168. Swaminathan, S. & Schellenberg, E. G. Current emotion research in music psychology. Emot. Rev. 7, 189–197 (2015).

    Article Google Scholar

  169. Madison, G. & Schiölde, G. Repeated listening increases the liking for music regardless of its complexity: implications for the appreciation and aesthetics of music. Front. Neurosci. 11, 147 (2017).

    Article PubMed PubMed Central Google Scholar

  170. Corrigall, K. A. & Schellenberg, E. G. Liking music: genres, contextual factors, and individual differences. in Art, Aesthetics, and the Brain (Oxford Univ. Press, 2015).

  171. Zentner, A. Measuring the effect of file sharing on music purchases. J. Law Econ. 49, 63–90 (2006).

    Article Google Scholar

  172. Rentfrow, P. J. & Gosling, S. D. The do re mi’s of everyday life: the structure and personality correlates of music preferences. J. Pers. Soc. Psychol. 84, 1236–1256 (2003).

    Article PubMed Google Scholar

  173. Vuust, P. et al. Personality influences career choice: sensation seeking in professional musicians. Music. Educ. Res. 12, 219–230 (2010).

    Article Google Scholar

  174. Rohrmeier, M. & Rebuschat, P. Implicit learning and acquisition of music. Top. Cogn. Sci. 4, 525–553 (2012).

    Article PubMed Google Scholar

  175. Münthe, T. F., Altenmüller, E. & Jäncke, L. The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci. 3, 1–6 (2002). This review highlights how professional musicians represent an ideal model for investigating neuroplasticity.

    Google Scholar

  176. Habibi, A. et al. Childhood music training induces change in micro and macroscopic brain structure: results from a longitudinal study. Cereb. Cortex 28, 4336–4347 (2018).

    Article PubMed Google Scholar

  177. Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F. & Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 33, 1047–1055 (1995).

    Article CAS PubMed Google Scholar

  178. Baer, L. H. et al. Regional cerebellar volumes are related to early musical training and finger tapping performance. Neuroimage 109, 130–139 (2015).

    Article CAS PubMed Google Scholar

  179. Kleber, B. et al. Voxel-based morphometry in opera singers: increased gray-matter volume in right somatosensory and auditory cortices. Neuroimage 133, 477–483 (2016).

    Article PubMed Google Scholar

  180. Gaser, C. & Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245 (2003). Using a morphometric technique, this study shows a grey matter volume difference in multiple brain regions between professional musicians and a matched control group of amateur musicians and non-musicians.

    Article CAS PubMed PubMed Central Google Scholar

  181. Sluming, V. et al. Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. Neuroimage 17, 1613–1622 (2002).

    Article PubMed Google Scholar

  182. Palomar-García, M.-Á., Zatorre, R. J., Ventura-Campos, N., Bueichekú, E. & Ávila, C. Modulation of functional connectivity in auditory–motor networks in musicians compared with nonmusicians. Cereb. Cortex 27, 2768–2778 (2017).

    PubMed Google Scholar

  183. Schneider, P. et al. Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat. Neurosci. 5, 688–694 (2002).

    Article CAS PubMed Google Scholar

  184. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    Article CAS PubMed Google Scholar

  185. Zamorano, A. M., Cifre, I., Montoya, P., Riquelme, I. & Kleber, B. Insula-based networks in professional musicians: evidence for increased functional connectivity during resting state fMRI. Hum. Brain Mapp. 38, 4834–4849 (2017).

    Article PubMed PubMed Central Google Scholar

  186. Kraus, N. & Chandrasekaran, B. Music training for the development of auditory skills. Nat. Rev. Neurosci. 11, 599–605 (2010).

    Article CAS PubMed Google Scholar

  187. Koelsch, S., Schröger, E. & Tervaniemi, M. Superior pre-attentive auditory processing in musicians. Neuroreport 10, 1309–1313 (1999).

    Article CAS PubMed Google Scholar

  188. Münte, T. F., Kohlmetz, C., Nager, W. & Altenmüller, E. Superior auditory spatial tuning in conductors. Nature 409, 580 (2001).

    Article PubMed Google Scholar

  189. Seppänen, M., Brattico, E. & Tervaniemi, M. Practice strategies of musicians modulate neural processing and the learning of sound-patterns. Neurobiol. Learn. Mem. 87, 236–247 (2007).

    Article PubMed Google Scholar

  190. Guillot, A. et al. Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage 41, 1471–1483 (2008).

    Article PubMed Google Scholar

  191. Bianco, R., Novembre, G., Keller, P. E., Villringer, A. & Sammler, D. Musical genre-dependent behavioural and EEG signatures of action planning. a comparison between classical and jazz pianists. Neuroimage 169, 383–394 (2018).

    Article CAS PubMed Google Scholar

  192. Vuust, P., Brattico, E., Seppänen, M., Näätänen, R. & Tervaniemi, M. Practiced musical style shapes auditory skills. Ann. N. Y. Acad. Sci. 1252, 139–146 (2012).

    Article PubMed Google Scholar

  193. Bangert, M. & Altenmüller, E. O. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci. 4, 26 (2003).

    Article PubMed PubMed Central Google Scholar

  194. Li, Q. et al. Musical training induces functional and structural auditory-motor network plasticity in young adults. Hum. Brain Mapp. 39, 2098–2110 (2018).

    Article PubMed PubMed Central Google Scholar

  195. Herholz, S. C., Coffey, E. B. J., Pantev, C. & Zatorre, R. J. Dissociation of neural networks for predisposition and for training-related plasticity in auditory-motor learning. Cereb. Cortex 26, 3125–3134 (2016).

    Article PubMed Google Scholar

  196. Putkinen, V., Tervaniemi, M. & Huotilainen, M. Musical playschool activities are linked to faster auditory development during preschool-age: a longitudinal ERP study. Sci. Rep. 9, 11310–11310 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  197. Putkinen, V., Tervaniemi, M., Saarikivi, K., Ojala, P. & Huotilainen, M. Enhanced development of auditory change detection in musically trained school-aged children: a longitudinal event-related potential study. Dev. Sci. 17, 282–297 (2014).

    Article PubMed Google Scholar

  198. Jentschke, S. & Koelsch, S. Musical training modulates the development of syntax processing in children. Neuroimage 47, 735–744 (2009).

    Article PubMed Google Scholar

  199. Chobert, J., François, C., Velay, J. L. & Besson, M. Twelve months of active musical training in 8-to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cereb. Cortex 24, 956–967 (2014).

    Article PubMed Google Scholar

  200. Moreno, S. et al. Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb. Cortex 19, 712–723 (2009).

    Article PubMed Google Scholar

  201. Putkinen, V., Huotilainen, M. & Tervaniemi, M. Neural encoding of pitch direction is enhanced in musically trained children and is related to reading skills. Front. Psychol. 10, 1475 (2019).

    Article PubMed PubMed Central Google Scholar

  202. Wong, P. C., Skoe, E., Russo, N. M., Dees, T. & Kraus, N. Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat. Neurosci. 10, 420–422 (2007).

    Article CAS PubMed PubMed Central Google Scholar

  203. Virtala, P. & Partanen, E. Can very early music interventions promote at-risk infants’ development? Ann. N. Y. Acad. Sci. 1423, 92–101 (2018).

    Article Google Scholar

  204. Flaugnacco, E. et al. Music training increases phonological awareness and reading skills in developmental dyslexia: a randomized control trial. PLoS ONE 10, e0138715 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  205. Fiveash, A. et al. A stimulus-brain coupling analysis of regular and irregular rhythms in adults with dyslexia and controls. Brain Cogn. 140, 105531 (2020).

    Article PubMed Google Scholar

  206. Schellenberg, E. G. Correlation = causation? music training, psychology, and neuroscience. Psychol. Aesthet. Creat. Arts 14, 475–480 (2019).

    Article Google Scholar

  207. Sala, G. & Gobet, F. Cognitive and academic benefits of music training with children: a multilevel meta-analysis. Mem. Cogn. 48, 1429–1441 (2020).

    Article Google Scholar

  208. Saffran, J. R. Musical learning and language development. Ann. N. Y. Acad. Sci. 999, 397–401 (2003).

    Article PubMed Google Scholar

  209. Friston, K. The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13, 293–301 (2009).

    Article PubMed Google Scholar

  210. Pearce, M. T. Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation. Ann. N. Y. Acad. Sci. 1423, 378–395 (2018).

    Article PubMed Central Google Scholar

  211. Novembre, G., Knoblich, G., Dunne, L. & Keller, P. E. Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation. Soc. Cogn. Affect. Neurosci. 12, 662–670 (2017).

    Article PubMed Central Google Scholar

  212. Konvalinka, I. et al. Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains. Neuroimage 94C, 79–88 (2014).

    Article Google Scholar

  213. Novembre, G., Mitsopoulos, Z. & Keller, P. E. Empathic perspective taking promotes interpersonal coordination through music. Sci. Rep. 9, 12255 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  214. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article CAS PubMed Google Scholar

  215. Patel, A. D. & Iversen, J. R. The evolutionary neuroscience of musical beat perception: the action simulation for auditory prediction (ASAP) hypothesis. Front. Syst. Neurosci. 8, 57 (2014).

    Article PubMed PubMed Central Google Scholar

  216. Sebanz, N. & Knoblich, G. Prediction in joint action: what, when, and where. Top. Cogn. Sci. 1, 353–367 (2009).

    Article PubMed Google Scholar

  217. Friston, K. J. & Frith, C. D. Active inference, communication and hermeneutics. Cortex 68, 129–143 (2015). This article proposes a link between active inference, communication and hermeneutics.

    Article PubMed PubMed Central Google Scholar

  218. Konvalinka, I., Vuust, P., Roepstorff, A. & Frith, C. D. Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Q. J. Exp. Psychol. 63, 2220–2230 (2010).

    Article Google Scholar

  219. Wing, A. M. & Kristofferson, A. B. Response delays and the timing of discrete motor responses. Percept. Psychophys. 14, 5–12 (1973).

    Article Google Scholar

  220. Repp, B. H. & Keller, P. E. Sensorimotor synchronization with adaptively timed sequences. Hum. Mov. Sci. 27, 423–456 (2008).

    Article PubMed Google Scholar

  221. Vorberg, D. & Schulze, H.-H. Linear phase-correction in synchronization: predictions, parameter estimation, and simulations. J. Math. Psychol. 46, 56–87 (2002).

    Article Google Scholar

  222. Novembre, G., Sammler, D. & Keller, P. E. Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action. Neuropsychologia 89, 414–425 (2016). Using dual-EEG, the authors propose alpha oscillations as a candidate for regulating the balance between internal and external information in joint action.

    Article PubMed Google Scholar

  223. Keller, P. E., Knoblich, G. & Repp, B. H. Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization. Conscious. Cogn. 16, 102–111 (2007).

    Article PubMed Google Scholar

  224. Fairhurst, M. T., Janata, P. & Keller, P. E. Leading the follower: an fMRI investigation of dynamic cooperativity and leader-follower strategies in synchronization with an adaptive virtual partner. Neuroimage 84, 688–697 (2014).

    Article PubMed Google Scholar

  225. Heggli, O. A., Konvalinka, I., Kringelbach, M. L. & Vuust, P. Musical interaction is influenced by underlying predictive models and musical expertise. Sci. Rep. 9, 1–13 (2019).

    Article CAS Google Scholar

  226. Heggli, O. A., Cabral, J., Konvalinka, I., Vuust, P. & Kringelbach, M. L. A Kuramoto model of self-other integration across interpersonal synchronization strategies. PLoS Comput. Biol. 15, e1007422 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  227. Heggli, O. A. et al. Transient brain networks underlying interpersonal strategies during synchronized action. Soc. Cogn. Affect. Neurosci. 16, 19–30 (2020). This EEG study shows that differences in interpersonal synchronization are reflected by activity in a temporoparietal network.

    Article PubMed Central Google Scholar

  228. Patel, A. D. Music, Language, and the Brain (Oxford Univ. Press, 2006).

  229. Molnar-Szakacs, I. & Overy, K. Music and mirror neurons: from motion to ‘e’motion. Soc. Cogn. Affect. Neurosci. 1, 235–241 (2006).

    Article PubMed PubMed Central Google Scholar

  230. Beaty, R. E., Benedek, M., Silvia, P. J. & Schacter, D. L. Creative cognition and brain network dynamics. Trends Cogn. Sci. 20, 87–95 (2016).

    Article PubMed Google Scholar

  231. Limb, C. J. & Braun, A. R. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS ONE 3, e1679 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  232. Liu, S. et al. Neural correlates of lyrical improvisation: an FMRI study of freestyle rap. Sci. Rep. 2, 834 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  233. Rosen, D. S. et al. Dual-process contributions to creativity in jazz improvisations: an SPM-EEG study. Neuroimage 213, 116632 (2020).

    Article PubMed Google Scholar

  234. Boasen, J., Takesh*ta, Y., Kuriki, S. & Yokosawa, K. Spectral-spatial differentiation of brain activity during mental imagery of improvisational music performance using MEG. Front. Hum. Neurosci. 12, 156 (2018).

    Article PubMed PubMed Central Google Scholar

  235. Berkowitz, A. L. & Ansari, D. Generation of novel motor sequences: the neural correlates of musical improvisation. Neuroimage 41, 535–543 (2008).

    Article PubMed Google Scholar

  236. Loui, P. Rapid and flexible creativity in musical improvisation: review and a model. Ann. N. Y. Acad. Sci. 1423, 138–145 (2018).

    Article Google Scholar

  237. Beaty, R. E. The neuroscience of musical improvisation. Neurosci. Biobehav. Rev. 51, 108–117 (2015).

    Article PubMed Google Scholar

  238. Vuust, P. & Kringelbach, M. L. Music improvisation: a challenge for empirical research. in Routledge Companion to Music Cognition (Routledge, 2017).

  239. Norgaard, M. Descriptions of improvisational thinking by artist-level jazz musicians. J. Res. Music. Educ. 59, 109–127 (2011).

    Article Google Scholar

  240. Kringelbach, M. L. & Deco, G. Brain states and transitions: insights from computational neuroscience. Cell Rep. 32, 108128 (2020).

    Article CAS PubMed Google Scholar

  241. Deco, G. & Kringelbach, M. L. Hierarchy of information processing in the brain: a novel ‘intrinsic ignition’ framework. Neuron 94, 961–968 (2017).

    Article CAS PubMed Google Scholar

  242. Pinho, A. L., de Manzano, O., Fransson, P., Eriksson, H. & Ullen, F. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. J. Neurosci. 34, 6156–6163 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  243. Pinho, A. L., Ullen, F., Castelo-Branco, M., Fransson, P. & de Manzano, O. Addressing a paradox: dual strategies for creative performance in introspective and extrospective networks. Cereb. Cortex 26, 3052–3063 (2016).

    Article PubMed Google Scholar

  244. de Manzano, O. & Ullen, F. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. Neuroimage 63, 272–280 (2012).

    Article PubMed Google Scholar

  245. Beaty, R. E. et al. Robust prediction of individual creative ability from brain functional connectivity. Proc. Natl Acad. Sci. USA 115, 1087–1092 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  246. Daikoku, T. Entropy, uncertainty, and the depth of implicit knowledge on musical creativity: computational study of improvisation in melody and rhythm. Front. Comput. Neurosci. 12, 97 (2018).

    Article PubMed PubMed Central Google Scholar

  247. Belden, A. et al. Improvising at rest: differentiating jazz and classical music training with resting state functional connectivity. Neuroimage 207, 116384 (2020).

    Article PubMed Google Scholar

  248. Arkin, C., Przysinda, E., Pfeifer, C. W., Zeng, T. & Loui, P. Gray matter correlates of creativity in musical improvisation. Front. Hum. Neurosci. 13, 169 (2019).

    Article PubMed PubMed Central Google Scholar

  249. Bashwiner, D. M., Wertz, C. J., Flores, R. A. & Jung, R. E. Musical creativity “revealed” in brain structure: interplay between motor, default mode, and limbic networks. Sci. Rep. 6, 20482 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  250. Przysinda, E., Zeng, T., Maves, K., Arkin, C. & Loui, P. Jazz musicians reveal role of expectancy in human creativity. Brain Cogn. 119, 45–53 (2017).

    Article PubMed Google Scholar

  251. Large, E. W., Kim, J. C., Flaig, N. K., Bharucha, J. J. & Krumhansl, C. L. A neurodynamic account of musical tonality. Music. Percept. 33, 319–331 (2016).

    Article Google Scholar

  252. Large, E. W. & Palmer, C. Perceiving temporal regularity in music. Cogn. Sci. 26, 1–37 (2002). This article proposes an oscillator-based approach for the perception of temporal regularity in music.

    Article Google Scholar

  253. Cannon, J. J. & Patel, A. D. How beat perception co-opts motor neurophysiology. Trends Cogn. Sci. 25, 137–150 (2020). The authors propose that cyclic time-keeping activity in the supplementary motor area, termed ‘proto-actions’, is organized by the dorsal striatum to support hierarchical metrical structures.

    Article PubMed Google Scholar

  254. Keller, P. E., Novembre, G. & Loehr, J. Musical ensemble performance: representing self, other and joint action outcomes. in Shared Representations: Sensorimotor Foundations of Social Life Cambridge Social Neuroscience (eds Cross, E. S. & Obhi, S. S.) 280-310 (Cambridge Univ. Press, 2016).

  255. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article CAS PubMed Google Scholar

  256. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

    Article PubMed Google Scholar

  257. Kahl, R. Selected Writings of Hermann Helmholtz (Wesleyan Univ. Press, 1878).

  258. Gregory, R. L. Perceptions as hypotheses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 290, 181–197 (1980).

    Article CAS PubMed Google Scholar

  259. Gibson, J. J. The Ecological Approach to Visual Perception (Houghton Mifflin, 1979).

  260. Fuster, J. The Prefrontal Cortex Anatomy, Physiology and Neuropsychology of the Frontal Lobe (Lippincott-Raven, 1997).

  261. Neisser, U. Cognition and Reality: Principles and Implications of Cognitive Psychology (W H Freeman/Times Books/ Henry Holt & Co, 1976).

  262. Arbib, M. A. & Hesse, M. B. The Construction of Reality (Cambridge Univ. Press, 1986).

  263. Cisek, P. & Kalaska, J. F. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33, 269–298 (2010).

    Article CAS PubMed Google Scholar

  264. Isomura, T., Parr, T. & Friston, K. Bayesian filtering with multiple internal models: toward a theory of social intelligence. Neural Comput. 31, 2390–2431 (2019).

    Article PubMed Google Scholar

  265. Friston, K. & Frith, C. A duet for one. Conscious. Cogn. 36, 390–405 (2015).

    Article PubMed PubMed Central Google Scholar

  266. Hunt, B. R., Ott, E. & Yorke, J. A. Differentiable generalized synchronization of chaos. Phys. Rev. E 55, 4029–4034 (1997).

    Article CAS Google Scholar

  267. Ghazanfar, A. A. & Takahashi, D. Y. The evolution of speech: vision, rhythm, cooperation. Trends Cogn. Sci. 18, 543–553 (2014).

    Article PubMed PubMed Central Google Scholar

  268. Wilson, M. & Wilson, T. P. An oscillator model of the timing of turn-taking. Psychon. Bull. Rev. 12, 957–968 (2005).

    Article PubMed Google Scholar

Download references

Music in the brain (2024)
Top Articles
Latest Posts
Article information

Author: Msgr. Benton Quitzon

Last Updated:

Views: 6743

Rating: 4.2 / 5 (43 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Msgr. Benton Quitzon

Birthday: 2001-08-13

Address: 96487 Kris Cliff, Teresiafurt, WI 95201

Phone: +9418513585781

Job: Senior Designer

Hobby: Calligraphy, Rowing, Vacation, Geocaching, Web surfing, Electronics, Electronics

Introduction: My name is Msgr. Benton Quitzon, I am a comfortable, charming, thankful, happy, adventurous, handsome, precious person who loves writing and wants to share my knowledge and understanding with you.